Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomed Res Int ; 2022: 3524090, 2022.
Article in English | MEDLINE | ID: covidwho-1854467

ABSTRACT

Biomedical named entity recognition (BioNER) from clinical texts is a fundamental task for clinical data analysis due to the availability of large volume of electronic medical record data, which are mostly in free text format, in real-world clinical settings. Clinical text data incorporates significant phenotypic medical entities (e.g., symptoms, diseases, and laboratory indexes), which could be used for profiling the clinical characteristics of patients in specific disease conditions (e.g., Coronavirus Disease 2019 (COVID-19)). However, general BioNER approaches mostly rely on coarse-grained annotations of phenotypic entities in benchmark text dataset. Owing to the numerous negation expressions of phenotypic entities (e.g., "no fever," "no cough," and "no hypertension") in clinical texts, this could not feed the subsequent data analysis process with well-prepared structured clinical data. In this paper, we developed Human-machine Cooperative Phenotypic Spectrum Annotation System (http://www.tcmai.org/login, HCPSAS) and constructed a fine-grained Chinese clinical corpus. Thereafter, we proposed a phenotypic named entity recognizer: Phenonizer, which utilized BERT to capture character-level global contextual representation, extracted local contextual features combined with bidirectional long short-term memory, and finally obtained the optimal label sequences through conditional random field. The results on COVID-19 dataset show that Phenonizer outperforms those methods based on Word2Vec with an F1-score of 0.896. By comparing character embeddings from different data, it is found that character embeddings trained by clinical corpora can improve F-score by 0.0103. In addition, we evaluated Phenonizer on two kinds of granular datasets and proved that fine-grained dataset can boost methods' F1-score slightly by about 0.005. Furthermore, the fine-grained dataset enables methods to distinguish between negated symptoms and presented symptoms. Finally, we tested the generalization performance of Phenonizer, achieving a superior F1-score of 0.8389. In summary, together with fine-grained annotated benchmark dataset, Phenonizer proposes a feasible approach to effectively extract symptom information from Chinese clinical texts with acceptable performance.


Subject(s)
COVID-19 , China , Electronic Health Records , Humans
2.
Comput Biol Med ; 133: 104375, 2021 06.
Article in English | MEDLINE | ID: covidwho-1184907

ABSTRACT

To mitigate the spread of the current coronavirus disease 2019 (COVID-19) pandemic, it is crucial to have an effective screening of infected patients to be isolated and treated. Chest X-Ray (CXR) radiological imaging coupled with Artificial Intelligence (AI) applications, in particular Convolutional Neural Network (CNN), can speed the COVID-19 diagnostic process. In this paper, we optimize the data augmentation and the CNN hyperparameters for detecting COVID-19 from CXRs in terms of validation accuracy. This optimization increases the accuracy of the popular CNN architectures such as the Visual Geometry Group network (VGG-19) and the Residual Neural Network (ResNet-50), by 11.93% and 4.97%, respectively. We then proposed CovidXrayNet model that is based on EfficientNet-B0 and our optimization results. We evaluated CovidXrayNet on two datasets, including our generated balanced COVIDcxr dataset (960 CXRs) and the benchmark COVIDx dataset (15,496 CXRs). With only 30 epochs of training, CovidXrayNet achieves state-of-the-art accuracy of 95.82% on the COVIDx dataset in the three-class classification task (COVID-19, normal or pneumonia). The CovidXRayNet model, the COVIDcxr dataset, and several optimization experiments are publicly available at https://github.com/MaramMonshi/CovidXrayNet.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , Humans , Neural Networks, Computer , SARS-CoV-2 , Tomography, X-Ray Computed
3.
Front Med ; 14(6): 760-775, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-756579

ABSTRACT

Coronavirus disease 2019 (COVID-19) is now pandemic worldwide and has heavily overloaded hospitals in Wuhan City, China during the time between late January and February. We reported the clinical features and therapeutic characteristics of moderate COVID-19 cases in Wuhan that were treated via the integration of traditional Chinese medicine (TCM) and Western medicine. We collected electronic medical record (EMR) data, which included the full clinical profiles of patients, from a designated TCM hospital in Wuhan. The structured data of symptoms and drugs from admission notes were obtained through an information extraction process. Other key clinical entities were also confirmed and normalized to obtain information on the diagnosis, clinical treatments, laboratory tests, and outcomes of the patients. A total of 293 COVID-19 inpatient cases, including 207 moderate and 86 (29.3%) severe cases, were included in our research. Among these cases, 238 were discharged, 31 were transferred, and 24 (all severe cases) died in the hospital. Our COVID-19 cases involved elderly patients with advanced ages (57 years on average) and high comorbidity rates (61%). Our results reconfirmed several well-recognized risk factors, such as age, gender (male), and comorbidities, as well as provided novel laboratory indications (e.g., cholesterol) and TCM-specific phenotype markers (e.g., dull tongue) that were relevant to COVID-19 infections and prognosis. In addition to antiviral/antibiotics and standard supportive therapies, TCM herbal prescriptions incorporating 290 distinct herbs were used in 273 (93%) cases. The cases that received TCM treatment had lower death rates than those that did not receive TCM treatment (17/273 = 6.2% vs. 7/20= 35%, P = 0.0004 for all cases; 17/77= 22% vs. 7/9= 77.7%, P = 0.002 for severe cases). The TCM herbal prescriptions used for the treatment of COVID-19 infections mainly consisted of Pericarpium Citri Reticulatae, Radix Scutellariae, Rhizoma Pinellia, and their combinations, which reflected the practical TCM principles (e.g., clearing heat and dampening phlegm). Lastly, 59% of the patients received treatment, including antiviral, antibiotics, and Chinese patent medicine, before admission. This situation might have some effects on symptoms, such as fever and dry cough. By using EMR data, we described the clinical features and therapeutic characteristics of 293 COVID-19 cases treated via the integration of TCM herbal prescriptions and Western medicine. Clinical manifestations and treatments before admission and in the hospital were investigated. Our results preliminarily showed the potential effectiveness of TCM herbal prescriptions and their regularities in COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/mortality , China , Combined Modality Therapy , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Survival Rate , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL